Isolation of nuclei and downstream processing of cell-type-specific nuclei from micro-dissected mouse brain regions – techniques and caveats

Author:

Chongtham M.C,Todorov H,Wettschereck J.E.,Gerber S.,Winter J.

Abstract

AbstractThe mammalian brain consists of several structurally and functionally distinct regions equipped with an equally complex cell-type system. Due to its relevance in uncovering disease mechanisms, the study of cell-type-specific molecular signatures of different brain regions has increased. The rapid evolution of newer and cheaper sequencing techniques has also boosted the interest in cell-type-specific epigenetic studies. In fact, the nucleus holds most of the cell’s epigenetic information and is quite resistant to tissue dissociation processes as compared to cells. As such, nuclei are continually preferred over cells for epigenetic studies. However, the isolation of nuclei from cells is still a biochemically complex process, with every step affecting downstream results. Therefore, it is necessary to use protocols that fit the experimental design to yield nuclei of high quality and quantity. However, the current protocols are not suitable for nuclei isolation of small volumes of micro-dissected brain regions from individual mouse brains.Additionally, the caveats associated with centrifugation steps of nuclei extraction and the effects of different buffers have not been thoroughly investigated. Therefore, in this study, we describe an iodixanol based density gradient ultracentrifugation protocol suitable for micro-dissected brain regions from individual mice using ArccreERT2 (TG/WT).R26CAG-Sun1-sfGFP-Myc (M/WT or M/M). This mouse model shows sfGFP expression (sfGFP+) in the nuclear membrane of specific stimulus activated cells, thereby providing a good basis for the study - nuclei isolation and separation of cell-type-specific nuclei. The study also introduces new tools for rapid visualization and assessment of quality and quantity of nascent extracted nuclei. These tools were then used to examine critical morphological features of nuclei derived from different centrifugation methods and the use of different buffers to uncover underlying effects. Finally, to obtain cell-type-specific nuclei (sfGFP+ nuclei) from the isolated nuclei pool of high viscosity, an optimized protocol for fluorescence activated nuclei sorting (FANS) was established to speed up sorting. Additionally, we present a 1% PFA protocol for fixation of isolated nuclei for long term microscopic visualization.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3