Plot diversity differentially affects the chemical composition of leaves, roots and root exudates in four subtropical tree species

Author:

Weinhold AlexanderORCID,Döll StefanieORCID,Liu MinORCID,Schedl AndreasORCID,Xu XingliangORCID,Neumann SteffenORCID,van Dam Nicole M.ORCID

Abstract

ABSTRACTPlants produce thousands of compounds, collectively called the metabolome, which mediate interactions with other organisms. The metabolome of an individual plant may change according to the number and nature of these interactions. We tested the hypothesis that tree diversity level affects the metabolome of four subtropical tree species in a biodiversity ecosystem-functioning experiment, BEF-China. We postulated that the chemical diversity of leaves, roots and root exudates increases with tree diversity. We expected the strength of this diversity effect to differ among leaf, root and root exudates samples. Considering their role in plant competition, we expected to find the strongest effects in root exudates.In an ecometabolomics approach, roots, root exudates and leaves of four tree species (Cinnamomum camphora, Cyclobalanopsis glauca, Daphniphyllum oldhamii, Schima superba) were sampled from selected plots in BEF-China. Samples were extracted and analysed using Liquid Chromatography-Time of Flight-Mass Spectrometry. The exudate metabolomes were normalized over their non-purgeable organic carbon level. Multivariate analyses were applied to identify the effect of both neighbouring (local) trees and plot diversity on tree metabolomes. The species and sample specific metabolites were assigned to major compound classes using the ClassyFire tool, whereas m/z features related to diversity effects were annotated manually.Individual tree species showed distinct leaf, root and root exudate metabolomes. The main compound class in leaves were the flavonoids, whereas carboxylic acids, prenol lipids and specific alkaloids were most prominent in root exudates and roots. Overall plot diversity had a stronger effect on metabolome profiles than the diversity of local, directly neighbouring trees. Leaf metabolomes responded more often to tree diversity level than exudates, whereas root metabolomes varied the least. We found not overall correlation between metabolite richness or diversity and tree diversity.Synthesis: Classification of metabolites supported initial ecological interpretation of differences among species and organs. Particularly the metabolomes of leaves and root exudates respond to differences in tree diversity. These responses were neither linear nor uniform and individual metabolites showed different dynamics. More controlled interaction experiments are needed to dissect the causes and consequences of the observed shifts in plant metabolomes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3