Reaction-Diffusion Model of Cortical Atrophy Spread during Early Stages of Alzheimer’s Disease

Author:

Kulason Sue,Miller Michael I,Trouvé Alain,

Abstract

1.AbstractThis study introduces a reaction-diffusion model of atrophy spread across the rhinal cortex during early stages of Alzheimer’s disease. Our finite elements model of atrophy spread is motivated by histological evidence of a spatio-temporally specific pattern of neurofibrillary tau accumulation, and evidence of grey matter atrophy correlating with sites of neurofibrillary tau accumulation. The goal is to estimate disease-related parameters such as the origin of atrophy, the speed at which atrophy spreads, and the stage of the disease. We solve a constrained optimization problem using the adjoint state method and gradient descent to match modeled cortical thickness to observed cortical thickness as calculated from 3T MRI scans. Simulation testing shows that disease-related parameters can be estimated accurately with as little as 2 years of annual observations, depending on the stage of the disease. Case studies of 3 subjects suggests that we can pinpoint the origin of atrophy to the anterior transentorhinal cortex, and that the speed of atrophy spread is less than 1 mm per year. In the future, this type of modeling could be useful to stage the progression of the disease prior to the onset of clinical symptoms.2.Author SummaryMisfolded tau proteins are associated with Alzheimer’s disease. They are known to accumulate and spread across the rhinal cortex, which is an area of the temporal lobe. Recent imaging studies suggest that we can detect grey matter thinning that occurs in pattern similar to tau spread. In this study, we introduce a model of disease spread to examine where thinning begins, how fast it spreads, and the stage of the disease. The results show that the origin of thinning corresponds with the earliest known location of tau accumulation, and spreads at a rate of less than 1 mm per year. Future work may focus on staging the progression of the disease using this type of model.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3