An Interpretable Longitudinal Preeclampsia Risk Prediction Using Machine Learning

Author:

Eberhard Braden W,Cohen Raphael Y,Rigoni John,Bates David WORCID,Gray Kathryn JORCID,Kovacheva Vesela PORCID

Abstract

SUMMARYBackgroundPreeclampsia is a pregnancy-specific disease characterized by new onset hypertension after 20 weeks of gestation that affects 2-8% of all pregnancies and contributes to up to 26% of maternal deaths. Despite extensive clinical research, current predictive tools fail to identify up to 66% of patients who will develop preeclampsia. We sought to develop a tool to longitudinally predict preeclampsia risk.MethodsIn this retrospective model development and validation study, we examined a large cohort of patients who delivered at six community and two tertiary care hospitals in the New England region between 02/2015 and 06/2023. We used sociodemographic, clinical diagnoses, family history, laboratory, and vital signs data. We developed eight datasets at 14, 20, 24, 28, 32, 36, 39 weeks gestation and at the hospital admission for delivery. We created linear regression, random forest, xgboost, and deep neural networks to develop multiple models and compared their performance. We used Shapley values to investigate the global and local explainability of the models and the relationships between the predictive variables.FindingsOur study population (N=120,752) had an incidence of preeclampsia of 5.7% (N=6,920). The performance of the models as measured using the area under the curve, AUC, was in the range 0.73-0.91, which was externally validated. The relationships between some of the variables were complex and non-linear; in addition, the relative significance of the predictors varied over the pregnancy. Compared to the current standard of care for preeclampsia risk stratification in the first trimester, our model would allow 48.6% more at-risk patients to be identified.InterpretationOur novel preeclampsia prediction tool would allow clinicians to identify patients at risk early and provide personalized predictions, as well as longitudinal predictions throughout pregnancy.FundingNational Institutes of Health, Anesthesia Patient Safety Foundation.RESEARCH IN CONTEXTEvidence before this studyCurrent tools for the prediction of preeclampsia are lacking as they fail to identify up to 66% of the patients who develop preeclampsia. We searched PubMed, MEDLINE, and the Web of Science from database inception to May 1, 2023, using the keywords “deep learning”, “machine learning”, “preeclampsia”, “artificial intelligence”, “pregnancy complications”, and “predictive models”. We identified 13 studies that employed machine learning to develop prediction models for preeclampsia risk based on clinical variables. Among these studies, six included biomarkers such as serum placental growth factor, pregnancy-associated plasma protein A, and uterine artery pulsatility index, which are not routinely available in our clinical practice; two studies were in diverse cohorts of more than 100 000 patients, and two studies developed longitudinal predictions using medical records data. However, most studies have limited depth, concerns about data leakage, overfitting, or lack of generalizability.Added value of this studyWe developed a comprehensive longitudinal predictive tool based on routine clinical data that can be used throughout pregnancy to predict the risk of preeclampsia. We tested multiple types of predictive models, including machine learning and deep learning models, and demonstrated high predictive power. We investigated the changes over different time points of individual and group variables and found previously known and novel relationships between variables such as red blood cell count and preeclampsia risk.Implications of all the available evidenceLongitudinal prediction of preeclampsia using machine learning can be achieved with high performance. Implementation of an accurate predictive tool within the electronic health records can aid clinical care and identify patients at heightened risk who would benefit from aspirin prophylaxis, increased surveillance, early diagnosis, and escalation in care. These results highlight the potential of using artificial intelligence in clinical decision support, with the ultimate goal of reducing iatrogenic preterm birth and improving perinatal care.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3