Discovering optimal kinetic pathways for self-assembly using automatic differentiation

Author:

Jhaveri Adip,Loggia Spencer,Qian YianORCID,Johnson Margaret E.ORCID

Abstract

AbstractDuring self-assembly of macromolecules ranging from ribosomes to viral capsids, the formation of long-lived intermediates or kinetic traps can dramatically reduce yield of the functional products. Understanding biological mechanisms for avoiding traps and efficiently assembling is essential for designing synthetic assembly systems, but learning optimal solutions requires numerical searches in high-dimensional parameter spaces. Here, we exploit powerful automatic differentiation algorithms commonly employed by deep learning frameworks to optimize physical models of reversible self-assembly, discovering diverse solutions in the space of rate constants for 3-7 subunit complexes. We define two biologically-inspired protocols that prevent kinetic trapping through either internal design of subunit binding kinetics or external design of subunit titration in time. Our third protocol acts to recycle intermediates, mimicking energy-consuming enzymes. Preventative solutions via interface design are the most efficient and scale better with more subunits, but external control via titration or recycling are effective even for poorly evolved binding kinetics. Whilst all protocols can produce good solutions, diverse subunits always helps; these complexes access more efficient solutions when following external control protocols, and are simpler to design for internal control, as molecular interfaces do not need modification during assembly given sufficient variation in dimerization rates. Our results identify universal scaling in the cost of kinetic trapping, and provide multiple strategies for eliminating trapping and maximizing assembly yield across large parameter spaces.SIGNIFICANCEMacromolecular complexes are frequently composed of diverse subunits. While evolution may favor repeated subunits and symmetry, we show how diversity in subunits generates an expansive parameter space that naturally improves the ‘expressivity’ of self-assembly, much like a deeper neural network. By using automatic differentiation algorithms commonly used in deep learning, we searched these parameter spaces to identify classes of kinetic protocols that mimic biological solutions for productive self-assembly. Our results reveal how high-yield complexes that easily become kinetically trapped in incomplete intermediates can instead be steered by internal design of rate constants or external and active control of subunits to efficiently assemble, exploiting nonequilibrium control of these ubiquitous dynamical systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3