Role of protonation states in stability of molecular dynamics simulations of high-resolution membrane protein structures

Author:

Lasham Jonathan,Djurabekova Amina,Zickermann Volker,Vonck Janet,Sharma Vivek

Abstract

AbstractClassical molecular dynamics (MD) simulations provide unmatched spatial and time resolution of protein structure and function. However, accuracy of MD simulations often depends on the quality of force field parameters and the time scale of sampling. Another limitation of conventional MD simulations is that the protonation states of titratable amino acid residues remain fixed during simulations, even though protonation state changes coupled to conformational dynamics are central to protein function. Due to the uncertainty in selecting protonation states, classical MD simulations are sometimes performed with all amino acids modeled in their standard charged states at pH 7. Here we performed and analyzed classical MD simulations on high-resolution cryo-EM structures of two membrane proteins that transfer protons by catalyzing protonation/deprotonation reactions. In simulations performed with amino acids modeled in their standard protonation state the structure diverges far from its starting conformation. In comparison, MD simulations performed with pre-determined protonation states of amino acid residues reproduce the structural conformation, protein hydration, and protein-water and protein-protein interactions of the structure much better. The results suggest it is crucial to perform basic protonation state calculations, especially on structures where protonation changes play an important functional role, prior to launching any MD simulations. Furthermore, the combined approach of protonation state prediction and MD simulations can provide valuable information on the charge states of amino acids in the cryo-EM sample. Even though accurate prediction of protonation states currently remains a challenge, we introduce an approach of combining pKa prediction with cryo-EM density map analysis that helps in improving not only the protonation state predictions, but also the atomic modeling of density data.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3