Aggressive or moderate drug therapy for infectious diseases? Trade-offs between different treatment goals at the individual and population levels

Author:

Scire JérémieORCID,Hozé NathanaëlORCID,Uecker HildegardORCID

Abstract

AbstractAntimicrobial resistance is one of the major public health threats of the 21st century. There is a pressing need to adopt more efficient treatment strategies in order to prevent the emergence and spread of resistant strains. The common approach is to treat patients with high drug doses, both to clear the infection quickly and to reduce the risk of de novo resistance. Recently, several studies have argued that, at least in some cases, low-dose treatments could be more suitable to reduce the within-host emergence of antimicrobial resistance. However, the choice of a drug dose may have consequences at the population level, which has received little attention so far.Here, we study the influence of the drug dose on resistance and disease management at the host and population levels. We develop a nested two-strain model and unravel trade-offs in treatment benefits between an individual and the community. We use several measures to evaluate the benefits of any dose choice. Two measures focus on the emergence of resistance, at the host level and at the population level. The other two focus on the overall treatment success: the outbreak probability and the disease burden. We find that different measures can suggest different dosing strategies. In particular, we identify situations where low doses minimize the risk of emergence of resistance at the individual level, while high or intermediate doses prove most beneficial to improve the treatment efficiency or even to reduce the risk of resistance in the population.Author summaryThe obvious goals of antimicrobial drug therapy are rapid patient recovery and low disease prevalence in the population. However, achieving these goals is complicated by the rapid evolution and spread of antimicrobial resistance. A sustainable treatment strategy needs to account for the risk of resistance and keep it in check. One parameter of treatment is the drug dosage, which can vary within certain limits. It has been proposed that lower doses may, in some cases, be more suitable than higher doses to reduce the risk of resistance evolution in any one patient. However, if lower doses prolong the period of infectiousness, such a strategy has consequences for the pathogen dynamics of both strains at the population level. Here, we set up a nested model of within-host and between-host dynamics for an acute self-limiting infection. We explore the consequences of drug dosing on several measures of treatment success: the risk of resistance at the individual and population levels and the outbreak probability and the disease burden of an epidemic. Our analysis shows that trade-offs may exist between optimal treatments under these various criteria. The criterion given most weight in the decision process ultimately depends on the disease and population under consideration.

Publisher

Cold Spring Harbor Laboratory

Reference53 articles.

1. Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America

2. The emergence of pan-resistant Gram-negative pathogens merits a rapid global political response

3. Centres for Disease Control and Prevention (US). Antibiotic resistance threats in the United States, 2013. Centres for Disease Control and Prevention, US Department of Health and Human Services 2013.

4. Methods for in vitro evaluating antimicrobial activity: A review

5. The path of least resistance: aggressive or moderate treatment?

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3