Closed loop motor-sensory dynamics in human vision

Author:

Gruber Liron,Ahissar Ehud

Abstract

AbstractVision is obtained with a continuous motion of the eyes. The kinematic analysis of eye motion, during any visual or ocular task, typically reveals two (kinematic) components: saccades, which quickly replace the visual content in the retinal fovea, and drifts, which slowly scan the image after each saccade. While the saccadic exchange of regions of interest (ROIs) is commonly considered to be included in motor-sensory closed-loops, it is commonly assumed that drifts function in an open-loop manner, that is, independent of the concurrent visual input. Accordingly, visual perception is assumed to be based on a sequence of open-loop processes, each initiated by a saccade-triggered retinal snapshot. Here we directly challenged this assumption by testing the dependency of drift kinematics on concurrent visual inputs using real-time gaze-contingent-display. Our results demonstrate a dependency of the trajectory on the concurrent visual input, convergence of speed to condition-specific values and maintenance of selected drift-related motor-sensory controlled variables, all strongly indicative of drifts being included in a closed-loop brain-world process, and thus suggesting that vision is inherently a closed-loop process.Author summaryOur eyes do not function like cameras; it has long been known that we are actively scanning our visual environment in order to see. Moreover, it is commonly accepted that our fast eye movements, saccades, are controlled by the brain and are affected by the sensory input. However, our slow eye movements, the ocular drifts, are often ignored when visual acquisition is analyzed. Accordingly, visual processing is typically assumed to be based on computations performed on saccade-triggered snapshots of the retinal state. Our work strongly challenges this model and provides significant evidence for an alternative model, a cybernetic one. We show that the dynamics of the ocular drifts do not allow, and cannot be explained by, open loop visual acquisition. Instead, our results suggest that visual acquisition is part of a closed-loop process, which dynamically and continuously links the brain to its environment.

Publisher

Cold Spring Harbor Laboratory

Reference82 articles.

1. Steinman RM , Levinson JZ . The role of eye movement in the detection of contrast and spatial detail. In: Kowler E , editor. Eye Movements and Their Role in Visual and Cognitive Processes. Amsterdam: Elsevier; 1990. p. 115–212.

2. Sensorimotor Mismatch Signals in Primary Visual Cortex of the Behaving Mouse

3. Locomotion Enhances Neural Encoding of Visual Stimuli in Mouse V1

4. Eye movements during fixation

5. Yarbus AL . Eye Movements and Vision. New York: Plenum; 1967.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3