The impact of partitioning on phylogenomic accuracy

Author:

Darriba Diego,Posada David

Abstract

Several strategies have been proposed to assign substitution models in phylogenomic datasets, or partitioning. The accuracy of these methods, and most importantly, their impact on phylogenetic estimation has not been thoroughly assessed using computer simulations. We simulated multiple partitioning scenarios to benchmark two a priori partitioning schemes (one model for the whole alignment, one model for each data block), and two statistical approaches (hierarchical clustering and greedy) implemented in PartitionFinder and in our new program, PartitionTest. Most methods were able to identify optimal partitioning schemes closely related to the true one. Greedy algorithms identified the true partitioning scheme more frequently than the clustering algorithms, but selected slightly less accurate partitioning schemes and tended to underestimate the number of partitions. PartitionTest was several times faster than PartitionFinder, with equal or better accuracy. Importantly, maximum likelihood phylogenetic inference was very robust to the partitioning scheme. Best-fit partitioning schemes resulted in optimal phylogenetic performance, without appreciable differences compared to the use of the true partitioning scheme. However, accurate trees were also obtained by a ?simple? strategy consisting of assigning independent GTR+G models to each data block. On the contrary, leaving the data unpartitioned always diminished the quality of the trees inferred, to a greater or lesser extent depending on the simulated scenario. The analysis of empirical data confirmed these trends, although suggesting a stronger influence of the partitioning scheme. Overall, our results suggests that statistical partitioning, but also the a priori assignment of independent GTR+G models, maximize phylogenomic performance.

Publisher

Cold Spring Harbor Laboratory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3