Extension and Integration of the Gene Ontology (GO): Combining GO Vocabularies With External Vocabularies

Author:

Hill David P.,Blake Judith A.,Richardson Joel E.,Ringwald Martin

Abstract

Structured vocabulary development enhances the management of information in biological databases. As information grows, handling the complexity of vocabularies becomes difficult. Defined methods are needed to manipulate, expand and integrate complex vocabularies. The Gene Ontology (GO) project provides the scientific community with a set of structured vocabularies to describe domains of molecular biology. The vocabularies are used for annotation of gene products and for computational annotation of sequence data sets. The vocabularies focus on three concepts universal to living systems, biological process, molecular function and cellular component. As the vocabularies expand to incorporate terms needed by diverse annotation communities, species-specific terms become problematic. In particular, the use of species-specific anatomical concepts remains unresolved. We present a method for expansion of GO into areas outside of the three original universal concept domains. We combine concepts from two orthogonal vocabularies to generate a larger, more specific vocabulary. The example of mammalian heart development is presented because it addresses two issues that challenge GO; inclusion of organism-specific anatomical terms, and proliferation of terms and relationships. The combination of concepts from orthogonal vocabularies provides a robust representation of relevant terms and an opportunity for evaluation of hypothetical concepts.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics(clinical),Genetics

Reference26 articles.

1. Apoptosis in the pattern formation of the ventricular wall during mouse heart organogenesis

2. Aho A.V. Hopcroft J.E. Ullman J.D. (1983) Directed graphs. Data structures and algorithms (Addison-Wesley, Reading, MA), pp 219–221.

3. Ashburner M. Lewis S. (2002) On ontologies for biologists: The Gene Ontology—Uncoupling the web. In silico biology. Novartis Symposium, (in press)..

4. An internet-accessible database of mouse developmental anatomy based on a systematic nomenclature

5. SNOMED-encoded surgical pathology databases: A tool for epidemiologic investigation.;Berman;Mod. Pathol.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3