Abstract
AbstractCollective behavior can spontaneously emerge when individuals follow common rules of interaction. However, the behavior of each individual will differ due to existing genetic and non-genetic variation within the population. It remains unclear how this individuality is managed to achieve collective behavior. We quantified individuality in bands of clonalEscherichia colicells that migrate collectively along a channel by following a self-generated gradient of attractant. We discovered that despite substantial differences in individual chemotactic abilities, the cells are able to migrate as a coherent group by spontaneously sorting themselves within the moving band. This sorting mechanism ensures that differences between individual chemotactic abilities are compensated by differences in the local steepness of the traveling gradient each individual must navigate, and determines the minimum performance required to travel with the band. By resolving conflicts between individuality and collective migration, this mechanism enables populations to maintain advantageous diversity while on the move.
Publisher
Cold Spring Harbor Laboratory