The HCP 7T Retinotopy Dataset: Description and pRF Analysis

Author:

Benson Noah C.,Jamison Keith W.,Arcaro Michael J.,Vu An,Glasser Matthew F.,Coalson Timothy S.,Van Essen David C.,Yacoub Essa,Ugurbil Kamil,Winawer Jonathan,Kay Kendrick

Abstract

AbstractAbout a quarter of human cerebral cortex is dedicated mainly to visual processing. The large-scale organization of visual cortex can be measured with functional magnetic resonance imaging (fMRI) while subjects view spatially modulated visual stimuli, also known as ‘retinotopic mapping’. One of the datasets collected by the Human Connectome Project (HCP) involved ultra-high-field (7 Tesla) fMRI retinotopic mapping in 181 healthy young adults (1.6-mm resolution), yielding the largest freely available collection of retinotopy data. Here, we describe the experimental paradigm and the results of model-based analysis of the fMRI data. These results provide estimates of population receptive field position and size. Our analyses include both results from individual subjects as well as results obtained by averaging fMRI time-series across subjects at each cortical and subcortical location and then fitting models. Both the group-average and individual-subject results reveal robust signals across much of the brain, including occipital, temporal, parietal, and frontal cortex as well as subcortical areas. The group-average results agree well with previously published parcellations of visual areas. In addition, split-half analyses show strong within-subject reliability, further demonstrating the high quality of the data. We make publicly available the analysis results for individual subjects and the group average, as well as associated stimuli and analysis code. These resources provide an opportunity for studying fine-scale individual variability in cortical and subcortical organization and the properties of high-resolution fMRI. In addition, they provide a set of observations that can be compared with other HCP measures acquired in these same participants.

Publisher

Cold Spring Harbor Laboratory

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topological Receptive Field Model for Human Retinotopic Mapping;Medical Image Computing and Computer Assisted Intervention – MICCAI 2021;2021

2. Visual neuroscience methods for marmosets: efficient receptive field mapping and head-free eye tracking;2020-10-30

3. Optimizing Visual Cortex Parameterization with Error-Tolerant Teichmüller Map in Retinotopic Mapping;Medical Image Computing and Computer Assisted Intervention – MICCAI 2020;2020

4. Topographic Mapping of Parietal Cortex;Spatial Learning and Attention Guidance;2019

5. How to Enhance the Power to Detect Brain–Behavior Correlations With Limited Resources;Frontiers in Human Neuroscience;2018-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3