Abstract
AbstractA primary function of the extracellular proteases ofStaphylococcus aureusis to control the progression of infection by selectively modulating the stability of virulence factors. Consequently, a regulatory network exists to titrate protease abundance/activity, to influence accumulation, or lack thereof, of individual virulence factors. Herein, we comprehensively map this system, exploring regulation of the four protease loci by known and novel factors. In so doing, we determine that seven major elements (SarS, SarR, Rot, MgrA, CodY, SaeR, and SarA) form the primary network of control, with the latter three being the most powerful. We note that expression of aureolysin is largely repressed by these factors, whilst thesploperon is subject to the strongest upregulation of any protease loci, particularly by SarR and SaeR. Furthermore, when exploringscpAexpression, we find it to be profoundly influenced in opposing fashions by SarA (repressor) and SarR (activator). We also present the screening of >100 regulator mutants ofS. aureus, identifying 7 additional factors (ArgR2, AtlR, MntR, Rex, XdrA, Rbf, and SarU) that form a secondary circuit of protease control. Primarily these elements serve as activators, although we reveal XdrA as a new repressor of protease expression. With the exception or ArgR2, each of the new effectors appear to work through the primary network of regulation to influence protease production. Collectively, we present a comprehensive regulatory circuit that emphasizes the complexity of protease regulation and suggest that its existence speaks to the importance of these enzymes toS. aureusphysiology and pathogenic potential.ImportanceThe complex regulatory role of the proteases necessitates very tight coordination and control of their expression. Whilst this process has been well studied, a major oversight has been the consideration of proteases as a single entity, rather than 10 enzymes produced from four different promoters. As such, in this study we comprehensively characterized the regulation of each protease promoter, discovering vast differences in the way each protease operon is controlled. Additionally, we broaden the picture of protease regulation using a global screen to identify novel loci controlling protease activity, uncovering a cadre of new effectors of protease expression. The impact of these elements on the activity of proteases and known regulators was characterized producing a comprehensive regulatory circuit that emphasizes the complexity of protease regulation inStaphylococcus aureus.
Publisher
Cold Spring Harbor Laboratory