Mitochondrial membrane proteins and VPS35 orchestrate selective removal of mtDNA

Author:

Pla-Martin DavidORCID,Sen Ayesha,Kallabis Sebastian,Nüchel Julian,Maliphol Kanjanamas,Hofmann Julia,Krüger Marcus,Wiesner Rudolf J.

Abstract

AbstractIntegrity of mitochondrial DNA (mtDNA), encoding several subunits of the respiratory chain, is essential to maintain mitochondrial fitness. Mitochondria, as a central hub for metabolism, are affected in a wide variety of human diseases but also during normal ageing, where mtDNA integrity is compromised. Mitochondrial quality control mechanisms work at different levels, and mitophagy and its variants are critical to remove dysfunctional mitochondria together with mtDNA to maintain cellular homeostasis. Understanding the mechanisms governing a selective turnover of mutation-bearing mtDNA without affecting the entire mitochondrial pool is fundamental to design therapeutic strategies against mtDNA diseases and ageing. Here we show that mtDNA depletion after expressing a dominant negative version of the mitochondrial helicase Twinkle, or by chemical means, is due to an exacerbated mtDNA turnover. Targeting of nucleoids is controlled by Twinkle which, together with the mitochondrial transmembrane proteins ATAD3 and SAMM50, orchestrate mitochondrial membrane remodeling to form extrusions. mtDNA removal depends on autophagy and requires the vesicular trafficking protein VPS35 which binds to Twinkle-enriched mitochondrial subcompartments upon mtDNA damage. Stimulation of autophagy by rapamycin selectively removes mtDNA deletions which accumulated during muscle regeneration in vivo, but without affecting mtDNA copy number. With these results we unveil a new complex mechanism specifically targeting and removing mutant mtDNA which occurs outside the mitochondrial network. We reveal the molecular targets involved in a process with multiple potential benefits against human mtDNA related diseases, either inherited, acquired or due to normal ageing.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3