Temperate tree seedlings have similar drought vulnerability despite having different hydraulic drought responses in adults

Author:

Lee Benjamin R.ORCID,Ibáñez Inés

Abstract

AbstractClimate change is projected result in higher frequencies of drought events across the world and lead to reduced performance in many temperate tree species. However, many studies in this area focus specifically on adult tree drought responses and overlook how trees in other age classes might differ in their vulnerability. Evidence shows that seedling drought response can differ from that of adults and furthermore that demographic performance in the seedling age class will have disproportionately strong effects on the assembly dynamics of future forests, together suggesting that understanding seedling drought responses will be critical to our ability to predict how forests will respond to climate change. In this study, we measured four indices of hydraulic response to drought (leaf water potential, photosynthetic capacity, non-structural carbohydrate concentration, and hydraulic conductivity), as well as interaction effects with shade treatments, for seedlings of two temperate tree species that differ in their adult drought response: isohydric Acer saccharum and anisohydric Quercus rubra. We found a strong isohydric response in A. saccharum seedlings that included conservation of leaf water potentials (>-1.8 MPa) and reductions in non-structural carbohydrate concentrations consistent with reduction of stomatal conductance. Quercus rubra seedlings were able to survive to more negative water potentials, but only rarely, and they showed a similar reduction in photosynthetic capacity as was found for A. saccharum. Our results suggest that, although Q. rubra seedlings display some anisohydric responses to drought, they are more isohydric than adults. Both species seem to be relatively similar in their vulnerability to drought despite the differences predicted from adult drought response, and our results suggest that seedlings of both species will be similarly vulnerable to future drought events.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3