Village in a dish: a model system for population-scale hiPSC studies

Author:

Neavin Drew R.,Steinmann Angela M.,Chiu Han Sheng,Daniszewski Maciej S.,Moutinho Cátia,Chan Chia-Ling,Tyebally Mubarika,Gnanasambandapillai Vikkitharan,Lam Chuan E.,Nguyen Uyen,Hernández Damián,Lidgerwood Grace E.,Hewitt Alex W.,Pébay AliceORCID,Palpant Nathan J.,Powell Joseph E.

Abstract

AbstractThe mechanisms by which DNA alleles contribute to disease risk, drug response, and other human phenotypes are highly context-specific, varying across cell types and under different conditions. Human induced pluripotent stem cells (hiPSCs) are uniquely suited to study these context-dependent effects, but to do so requires cell lines from hundreds or potentially thousands of individuals. Village cultures, where multiple hiPSC lines are cultured and differentiated together in a single dish, provide an elegant solution for scaling hiPSC experiments to the necessary sample sizes required for population-scale studies. Here, we show the utility of village models, demonstrating how cells can be assigned back to a donor line using single cell sequencing, and addressing whether line-specific signaling alters the transcriptional profiles of companion lines in a village culture. We generated single cell RNA sequence data from hiPSC lines cultured independently (uni-culture) and in villages at three independent sites. We show that the transcriptional profiles of hiPSC lines are highly consistent between uni- and village cultures for both fresh (0.46 < R < 0.88) and cryopreserved samples (0.46 < R < 0.62). Using a mixed linear model framework, we estimate that the proportion of transcriptional variation across cells is predominantly due to donor effects, with minimal evidence of variation due to culturing in a village system. We demonstrate that the genetic, epigenetic or hiPSC line-specific effects on gene expression are consistent whether the lines are uni- or village-cultured (0.82 < R < 0.94). Finally, we identify the consistency in the landscape of cell states between uni- and village-culture systems. Collectively, we demonstrate that village methods can be effectively used to detect hiPSC line-specific effects including sensitive dynamics of cell states.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3