Deep phylo-taxono genomics reveals Xylella as a variant lineage of plant associated Xanthomonas with Stenotrophomonas and Pseudoxanthomonas as misclassified relatives

Author:

Bansal KanikaORCID,Kumar SanjeetORCID,Kaur Amandeep,Singh Anu,Patil Prabhu B.ORCID

Abstract

AbstractGenus Xanthomonas is a group of phytopathogens which is phylogenetically related to Xylella, Stenotrophomonas and Pseudoxanthomonas following diverse lifestyles. Xylella is a lethal plant pathogen with highly reduced genome, atypical GC content and is taxonomically related to these three genera. Deep phylo-taxono-genomics reveals that Xylella is a variant Xanthomonas lineage that is sandwiched between Xanthomonas species. Comparative studies suggest the role of unique pigment and exopolysaccharide gene clusters in the emergence of Xanthomonas and Xylella clades. Pan genome analysis identified set of unique genes associated with sub-lineages representing plant associated Xanthomonas clade and nosocomial origin Stenotrophomonas. Overall, our study reveals importance to reconcile classical phenotypic data and genomic findings in reconstituting taxonomic status of these four genera.Significance StatementXylella fastidiosa is a devastating pathogen of perennial dicots such as grapes, citrus, coffee, and olives. The pathogen is transmitted by an insect vector to its specific host wherein the infection leads to complete wilting of the plants. The genome of X. fastidiosa is extremely reduced both in terms of size (2Mb) and GC content (50%) when compared with its relatives such as Xanthomonas, Stenotrophomonas, and Pseudoxanthomonas that have higher GC content (65%) and larger genomes (5Mb). In this study, using systematic and in-depth genome-based taxonomic and phylogenetic criteria along with comparative studies, we assert the need of unification of Xanthomonas with its misclassified relatives (Xylella, Stenotrophomonas and Pseudoxanthomonas). Interestingly, Xylella revealed itself as a minor lineage embedded within two major Xanthomonas lineages comprising member species of different hosts.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3