Iron-loaded deferiprone can support full hemoglobinization of cultured red blood cells in the absence of transferrin

Author:

Gallego-Murillo Joan SebastiánORCID,Yağcı NurcanORCID,Pinho Eduardo MachadoORCID,Abeijón-Valle Adrián,Wahl AljoschaORCID,van den Akker EmileORCID,von Lindern MariekeORCID

Abstract

AbstractIron is an essential nutrient in mammalian cell cultures, conventionally supplemented as iron-loaded transferrin (holotransferrin). The high cost of human transferrin represents a challenge for the large scale production of cell therapies, such as cultured red blood cells. We evaluated the use of deferiprone, a cell membrane-permeable drug for iron chelation therapy, as an iron carrier for erythroid cultures. Iron-loaded deferiprone (Def3·Fe3+) at a concentration of 52μmol/L could fully replace holotransferrin during erythroblast differentiation into reticulocytes, the erythroid differentiation stage with maximal iron requirements. Reticulocytes cultured in presence of Def3·Fe3+ or holotransferrin (1000μg/mL) were similar with respect to expression of cell-surface markers CD235a and CD49d, hemoglobin content, and oxygen association/dissociation. Def3·Fe3+ also supported expansion of the erythroid compartment in vitro, except for the first stage when hematopoietic stem cells committed to erythroblasts, in which a reduced erythroblasts yield was observed. This suggests that erythroblasts acquired the potential to process Def3·Fe3+ as iron source for biosynthesis pathways. Replacement of holotransferrin by Def3·Fe3+ was also successful in cultures of six myeloid cell lines (MOLM13, NB4, EOL1, K562, HL60, ML2). These results suggest that iron-loaded deferiprone can partially replace holotransferrin in chemically defined medium formulations for the production of cultured reticulocytes and proliferation of selected myeloid cell lines. This would lead to a significant decrease in medium cost that would improve the economic perspectives of the large scale production of red blood cells for transfusion purposes.Key pointsHolotransferrin limitations in erythroid cultures lead to lower erythroblast yields, impaired maturation and low enucleation efficiencies.Iron-loaded deferiprone can replace holotransferrin in erythroblast expansion and differentiation cultures.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3