Prediction of standard cell types and functional markers from flow cytometry gating definitions using machine learning

Author:

Rodriguez-Esteban RaulORCID,Duarte José,Teixeira Priscila C.,Richard Fabien,Koltsova Svetlana,Venus So W.

Abstract

AbstractBackgroundA key step in clinical flow cytometry data analysis is gating, which involves the identification of cell populations. The process of gating produces a set of reportable results, which are typically described by gating definitions. The non-standardized, non-interpreted nature of gating definitions represents a hurdle for data interpretation and data sharing across and within organizations. Interpreting and standardizing gating definitions for subsequent analysis of gating results requires a curation effort from experts. Machine learning approaches have the potential to help in this process by predicting expert annotations associated with gating definitions.MethodsWe created a gold-standard dataset by manually annotating thousands of gating definitions with cell type and functional marker annotations. We used this dataset to train and test a machine learning pipeline able to predict standard cell types and functional marker genes associated with gating definitions.ResultsThe machine learning pipeline predicted annotations with high accuracy for both cell types and functional marker genes. Accuracy was lower for gating definitions from assays belonging to laboratories from which limited or no prior data was available in the training. Manual error review ensured that resulting predicted annotations could be reused subsequently as additional gold-standard training data.ConclusionsMachine learning methods are able to consistently predict annotations associated with gating definitions from flow cytometry assays. However, a hybrid automatic and manual annotation workflow would be recommended to achieve optimal results.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3