Sorbitol in loquat promotes early flower bud differentiation via the MADS-box transcription factor EjCAL

Author:

Xu Hongxia,Chen Ting,Qi Meng,Li Xiaoying,Chen Junwei

Abstract

AbstractThe sugar alcohol sorbitol plays an important signaling role in fruit trees. Here, we found that sorbitol significantly increased during flower bud differentiation (FBD) in loquat (Eriobotrya japonica Lindl.) from the physiological FBD stage (EjS1) to the morphological FBD stage (EjS2), and it then decreased in the panicle development stage (EjS3) compared to in EjS2, and in subsequent stages. Spraying sorbitol increased the sorbitol content and thereby promoted early FBD and increased the proportion of flower buds that completed FBD. A transcriptomics analysis showed that the expression of a MADS-box transcription factor (TF) family gene, EjCAL, was highly correlated with the FBD phenotypic data. EjCAL-overexpressing transgenic tobacco exhibited the early FBD phenotype. Using the EjCAL promoter as bait in a yeast-one hybrid (Y1H) assay, the TF ERF12 was identified. Chromatin immunoprecipitation (ChIP)-PCR confirmed that EjERF12 can bind to the EjCAL promoter, and β-glucuronidase (GUS) activity assays demonstrated that EjERF12 can regulate EjCAL expression. Spraying loquat with sorbitol confirmed that EjERF12 and EjCAL expression were regulated by sorbitol. We also identified downstream functional genes (EjUF3GaT1, EjGEF2, and EjADF1) that might be involved in FBD. Finally, we found that the change in the level of hyperoside (a reproduction-related flavonoid) was consistent with that of sorbitol during FBD in loquat, and EjCAL can bind to the EjUF3GaT1 promoter and might thereby regulate hyperoside biosynthesis. Two early- and late-flowering varieties of loquat and EjCAL-overexpressing transgenic tobacco plants were used to confirm this hypothesis.One-sentence summarySorbitol promotes bud differentiation via EjCAL.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3