Fast and Robust Inference of Phylogenetic Ornstein-Uhlenbeck Models Using Parallel Likelihood Calculation

Author:

Mitov Venelin,Stadler Tanja

Abstract

AbstractPhylogenetic comparative methods have been used to model trait evolution, to test selection versus neutral hypotheses, to estimate optimal trait-values, and to quantify the rate of adaptation towards these optima. Several authors have proposed algorithms calculating the likelihood for trait evolution models, such as the Ornstein-Uhlenbeck (OU) process, in time proportional to the number of tips in the tree. Combined with gradient-based optimization, these algorithms enable maximum likelihood (ML) inference within seconds, even for trees exceeding 10,000 tips. Despite its useful statistical properties, ML has been criticised for being a point estimator prone to getting stuck in local optima. As an elegant alternative, Bayesian inference explores the entire information in the data and compares it to prior knowledge but, usually, runs in much longer time, even for small trees. Here, we propose an approach to use the full potential of ML and Bayesian inference, while keeping the runtime within minutes. Our approach combines (i) a new algorithm for parallel likelihood calculation; (ii) a previously published method for adaptive Metropolis sampling. In principle, the strategy of (i) and (ii) can be applied to any likelihood calculation on a tree which proceeds in a pruning-like fashion leading to enormous speed improvements. As a showcase, we implement the phylogenetic Ornstein-Uhlenbeck mixed model (POUMM) in the form of an easy-to-use and highly configurable R-package. In addition to the above-mentioned usage of comparative methods, the POUMM allows to estimate non-heritable variance and phylogenetic heritability. Using simulations and empirical data from 487 mammal species, we show that the POUMM is far more reliable in terms of unbiased estimates and false positive rate for stabilizing selection, compared to its alternative - the non-mixed Ornstein-Uhlenbeck model, which assumes a fully heritable and perfectly measurable trait. Further, our analysis reveals that the phylogenetic mixed model (PMM), which assumes neutral evolution (Brownian motion) can be a very unstable estimator of phylogenetic heritability, even if the Brownian motion assumption is only weakly violated. Our results prove the need for a simultaneous account for selection and non-heritable variance in phylogenetic evolutionary models and challenge stabilizing selection hypotheses stated in numerous macro-evolutionary studies.

Publisher

Cold Spring Harbor Laboratory

Reference59 articles.

1. Phylogenetic Approach Reveals That Virus Genotype Largely Determines HIV Set-Point Viral Load

2. Analytics, Revolution, and Steve Weston . 2015. “foreach: Provides Foreach Looping Construct for R.”

3. Parent-offspring regression to estimate the heritability of an HIV-1 trait in a realistic setup;Retrovirology,2017

4. Bates, D , and M Maechler . 2017. “Matrix: Sparse and Dense Matrix Classes and Methods.” R Package Version 0999375-43.

5. Beaulieu, Jeremy M , and Brian OMeara . 2016. “OUwie: Analysis of Evolutionary Rates in an OU Framework.”

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3