Improving multi-site autism classification based on site-dependence minimisation and second-order functional connectivity

Author:

Kunda Mwiza,Zhou ShuoORCID,Gong Gaolang,Lu HaipingORCID

Abstract

AbstractAutism spectrum disorder (ASD) has no objective diagnosis method despite having a high prevalence. Machine learning has been widely used to develop classification models for ASD using neuroimaging data. Recently, studies have shifted towards using large multi-site neuroimaging datasets to boost the clinical applicability and statistical power of results. However, the classification performance is hindered by the heterogeneous nature of agglomerative datasets. In this paper, we propose new methods for multi-site autism classification using the Autism Brain Imaging Data Exchange (ABIDE) dataset. We firstly propose a new second-order measure of functional connectivity (FC) named as Tangent Pearson embedding to extract better features for classification. Then we assess the statistical dependence between acquisition sites and FC features, and apply a domain adaptation approach to minimise the site dependence of FC features to improve classification. Our analysis shows that 1) statistical dependence between site and FC features is statistically significant at the 5% level, and 2) extracting second-order features from neuroimaging data and minimising their site dependence can improve over state-of-the-art classification results on the ABIDE dataset, achieving a classification accuracy of 73%.

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

1. Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example;NeuroImage,2017

2. Machine learning for neuroimaging with scikit-learn;Frontiers in Neuroinformatics,2014

3. Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, united states;Morbidity and Mortality Weekly Report. Surveillance Summaries,2014

4. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

5. Castrillon, J. G. , Ahmadi, A. , Navab, N. , & Richiardi, J. (2014). Learning with multi-site fMRI graph data. In Asilomar Conference on Signals, Systems and Computers (pp. 608–612).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3