Repurposing of KLF5 activates a cell cycle signature during the progression from a precursor state to Oesophageal Adenocarcinoma

Author:

Rogerson ConnorORCID,Ogden SamuelORCID,Britton Edward,Ang YengORCID,Sharrocks Andrew D.ORCID,

Abstract

AbstractOesophageal adenocarcinoma (OAC) is one of the most common causes of cancer deaths and yet compared to other common cancers, we know relatively little about the underlying molecular mechanisms. Barrett’s oesophagus (BO) is the only known precancerous precursor to OAC, but our understanding about the specific events leading to OAC development is limited. Here, we have integrated gene expression and chromatin accessibility profiles of human biopsies of BO and OAC and identified a strong cell cycle gene expression signature in OAC compared to BO. Through analysing associated chromatin accessibility changes, we have implicated the transcription factor KLF5 in the transition from BO to OAC. Importantly, we show that KLF5 expression is unchanged during this transition, but instead, KLF5 is redistributed across chromatin in OAC cells to directly regulate cell cycle genes specifically in OAC. Our findings have potential prognostic significance as the survival of patients with high expression of KLF5 target genes is significantly lower. We have provided new insights into the gene expression networks in OAC and the mechanisms behind progression to OAC, chiefly the repurposing of KLF5 for novel regulatory activity in OAC.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3