Giant African snail genomes provide insights into molluscan whole-genome duplication and aquatic-terrestrial transition

Author:

Liu Conghui,Ren Yuwei,Li Zaiyuan,Hu Qi,Yin Lijuan,Qiao Xi,Zhang Yan,Xing Longsheng,Xi Yu,Jiang Fan,Wang Sen,Huang Cong,Liu Bo,Wang Hengchao,Liu Hangwei,Wan Fanghao,Qian Wanqiang,Fan Wei

Abstract

AbstractWhole-genome duplication (WGD) has been observed across a wide variety of eukaryotic groups, contributing to evolutionary diversity and environmental adaptability. Mollusks are the second largest group of animals, and are among the organisms that have successfully adapted to the nonmarine realm through aquatic-terrestrial (A-T) transition, and no comprehensive research on WGD has been reported in this group. To explore WGD and the A-T transition in Mollusca, we assembled a chromosome-level reference genome for the giant African snail Achatina immaculata, a global invasive species, and compared the genomes of two giant African snails (A. immaculata and Achatina fulica) to the other available mollusk genomes. The chromosome-level macrosynteny, colinearity blocks, Ks peak and Hox gene clusters collectively suggested the occurrence of a WGD event shared by A. immaculata and A. fulica. The estimated timing of this WGD event (∼70 MYA) was close to the speciation age of the Sigmurethra-Orthurethra (within Stylommatophora) lineage and the Cretaceous-Tertiary (K-T) mass extinction, indicating that the WGD reported herein may have been a common event shared by all Sigmurethra-Orthurethra species and could have conferred ecological adaptability and genomic plasticity allowing the survival of the K-T extinction. Based on macrosynteny, we deduced an ancestral karyotype containing 8 conserved clusters for the Gastropoda-Bivalvia lineage. To reveal the mechanism of WGD in shaping adaptability to terrestrial ecosystems, we investigated gene families related to the respiration, aestivation and immune defense of giant African snails. Several mucus-related gene families expanded early in the Stylommatophora lineage, functioning in water retention, immune defense and wound healing. The hemocyanins, PCK and FBP families were doubled and retained after WGD, enhancing the capacity for gas exchange and glucose homeostasis in aestivation. After the WGD, zinc metalloproteinase genes were highly tandemly duplicated to protect tissue against ROS damage. This evidence collectively suggests that although the WGD may not have been the direct driver of the A-T transition, it provided an important legacy for the terrestrial adaptation of the giant African snail.

Publisher

Cold Spring Harbor Laboratory

Reference100 articles.

1. Genome duplication in amphibians and fish: an extended synthesis

2. Van de Peer, Y. , Maere, S. & Meyer, A . The evolutionary significance of ancient genome duplications. Nat. Rev. Genet. 10, 725 (2009).

3. Whole-genome duplication and plant macroevolution;Trends. Plant. Sci.,2018

4. "Why Polyploidy is Rarer in Animals Than in Plants" Revisited

5. Immune and stress responses in oysters with insights on adaptation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3