Evaluation of Simple and Convenient Methods for SARS-CoV-2 Detection in Wastewater in high and Low Resource Settings

Author:

Liu Pengbo,Guo Lizheng,Cavallo Matthew,Cantrell Caleb,Hilton Stephen Patrick,Dunbar Jillian,Barbero Robbie,Barclay Robert,Sablon Orlando III,Wolfe Marlene,Lepene Ben,Moe Christine

Abstract

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA monitoring in wastewater has become an important tool for COVID-19 surveillance. Although many viral concentration methods such as membrane filtration and skim milk are reported, these methods generally require large volumes of wastewater, expensive lab equipment, and laborious processes. We utilized a Nanotrap®Microbiome A Particles (Nanotrap particle) method for virus concentration in wastewater. The method was evaluated across six parameters: pH, temperature, incubation time, wastewater volumes, RNA extraction methods, and two virus concentration approaches vs. a one-step method. The method was further evaluated with the addition of the Nanotrap Enhancement Reagent 1 (ER1) by comparing the automated vs. a manual Nanotrap particle method. RT-qPCR targeting the nucleocapsid protein was used for detection and quantification of SARS-CoV-2 RNA. Different pH, temperature, incubation time, wastewater volumes, and RNA extraction methods did not result in reduced SARS-CoV-2 detection in wastewater samples. The two-step concentration method showed significantly better results (P<0.01) than the one-step method. Adding ER1 to wastewater prior to viral concentration using the Nanotrap particles significantly improved PCR Ct results (P<0.0001) in 10 mL grab samples processed by automated Nanotrap particle method or 10 mL and 40 mL samples processed by manual Nanotrap particle method. SARS-CoV-2 detection in 10 mL grab samples with ER1 and the automated method showed significantly better (P=0.0008) results than 150 mL grab samples using the membrane filtration method. SARS-CoV-2 detection in 10 mL swab samples with ER1 via the automated method was also significantly better than without ER1 (P<0.0001) and the skim milk method in 250 mL Moore swab samples (P=0.012). These results suggest that Nanotrap methods could substitute the traditional membrane filtration and skim milk methods for viral concentration without compromising on the assay sensitivity. The manual method can be used in resource-limited areas, and the high-throughput platform is appropriate for large-scale COVID-19 wastewater-based surveillance.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3