Mediator subunit MDT-15 promotes expression of propionic acid breakdown genes to prevent embryonic lethality inCaenorhabditis elegans

Author:

Goh Grace Ying Shyen,Beigi Arshia,Yan Junran,Doering Kelsie R. S.,Taubert StefanORCID

Abstract

AbstractThe micronutrient vitamin B12 is an essential cofactor for two enzymes: methionine synthase, which plays a key role in the one-carbon cycle; and methylmalonyl-CoA mutase, an enzyme in a pathway that breaks down branched-chain amino acids and odd-chain fatty acids. A second, vitamin B12-independent pathway that degrades methylmalonyl-CoA and its upstream metabolite propionic acid was recently described inCaenorhabditis elegans, the propionate shunt pathway. Activation of five shunt pathway genes in response to low vitamin B12 availability or high propionic acid levels is accomplished by a transcriptional regulatory mechanism involving two nuclear hormone receptors, NHR-10 and NHR-68. Here, we report that theC. elegansMediator subunitmdt-15is also essential for the activation of the propionate shunt pathway genes, likely by acting as a transcriptional coregulator for NHR-10.C. elegans mdt-15mutants fed a low vitamin B12 diet have transcriptomes resembling those of wild-type worms fed a high vitamin B12 diet, with low expression of the shunt genes. Phenotypically, the embryonic lethality ofmdt-15mutants is specifically rescued by diets high in vitamin B12, but not by dietary polyunsaturated fatty acids, which rescue many other phenotypes of themdt-15mutants. Finally, NHR-10 binds to MDT-15 in yeast-two-hybrid assays, and the transcriptomes ofnhr-10mutants resemble those ofmdt-15mutants. Our data show that MDT-15 is a key coregulator for an NHR regulating propionic acid detoxification, adding to roles played by NHR:MDT-15 partnerships in metabolic regulation and pinpointing vitamin B12 availability as a requirement formdt-15dependent embryonic development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3