Mega-scale experimental analysis of protein folding stability in biology and protein design

Author:

Tsuboyama KotaroORCID,Dauparas JustasORCID,Chen Jonathan,Laine ElodieORCID,Mohseni Behbahani YasserORCID,Weinstein Jonathan J.,Mangan Niall M.ORCID,Ovchinnikov SergeyORCID,Rocklin Gabriel J.ORCID

Abstract

AbstractAdvances in DNA sequencing and machine learning are illuminating protein sequences and structures on an enormous scale. However, the energetics driving folding are invisible in these structures and remain largely unknown. The hidden thermodynamics of folding can drive disease, shape protein evolution, and guide protein engineering, and new approaches are needed to reveal these thermodynamics for every sequence and structure. We present cDNA display proteolysis, a new method for measuring thermodynamic folding stability for up to 900,000 protein domains in a one-week experiment. From 1.8 million measurements in total, we curated a set of ~850,000 high-quality folding stabilities covering all single amino acid variants and selected double mutants of 354 natural and 188 de novo designed protein domains 40-72 amino acids in length. Using this immense dataset, we quantified (1) environmental factors influencing amino acid fitness, (2) thermodynamic couplings (including unexpected interactions) between protein sites, and (3) the global divergence between evolutionary amino acid usage and protein folding stability. We also examined how our approach could identify stability determinants in designed proteins and evaluate design methods. The cDNA display proteolysis method is fast, accurate, and uniquely scalable, and promises to reveal the quantitative rules for how amino acid sequences encode folding stability.One-Sentence SummaryMassively parallel measurement of protein folding stability by cDNA display proteolysis

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3