Highly dynamic evolution of the chemosensory gene repertoire driven by gene gain and expansion across subterranean beetles

Author:

Balart-García PauORCID,Bradford Tessa M.ORCID,Beasley-Hall Perry G.ORCID,Polak SlavkoORCID,Ribera Ignacio,Cooper Steven J. B.ORCID,Fernández RosaORCID

Abstract

ABSTRACTChemical cues in subterranean habitats differ highly from those on the surface due to the contrasting environmental conditions, such as absolute darkness, high humidity or food scarcity. Subterranean animals underwent changes to their sensory systems to facilitate the perception of essential stimuli for underground lifestyles. Despite representing unique systems to understand biological adaptation, the genomic basis of chemosensation across cave-dwelling species remains unexplored from a macroevolutionary perspective. Here, we explore the evolution of chemoreception in three beetle tribes that underwent at least six independent transitions to the underground through a phylogenomics spyglass. Our findings suggest that the chemosensory gene repertoire varies dramatically between species. Overall, no parallel changes in the net rate of evolution of chemosensory gene families were detected prior, during, or after the habitat shift among subterranean lineages. Contrarily, we found evidence of lineage-specific changes within surface and subterranean lineages. Our results reveal key duplications and losses shared between some of the lineages transitioning to the underground, including the loss of sugar receptors and gene duplications of the highly conserved ionotropic receptors IR25a and IR8a, involved in thermal and humidity sensing among other olfactory roles in insects. These duplications were detected both in independent subterranean lineages and their surface relatives, suggesting parallel evolution of these genes across lineages giving rise to cave-dwelling species. Overall, our results shed light on the genomic basis of chemoreception in subterranean beetles and contribute to deepen our understanding of the genomic underpinnings of adaptation to the subterranean lifestyle at a macroevolutionary scale.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3