The two-component system CroRS regulates isoprenoid flux to mediate antimicrobial tolerance in the bacterial pathogenEnterococcus faecalis

Author:

Todd Rose Francesca O,Darnell Rachel LORCID,Morris Sali,Paxie Olivia,Campbell Georgia,Cook Gregory MORCID,Gebhard Susanne

Abstract

AbstractAntimicrobial tolerance is the ability of a microbial population to survive, but not proliferate, during antimicrobial exposure. Significantly, it has been shown to precede the development of bona fide antimicrobial resistance. We have previously identified the two-component system CroRS as a critical regulator of tolerance to antimicrobials like teixobactin in the bacterial pathogenEnterococcus faecalis. To understand the molecular mechanism of this tolerance, we carried out RNA-seq analyses in theE. faecaliswild-type and isogenic ΔcroRSmutant to determine the teixobactin-induced CroRS regulon. We identified a 132 gene CroRS regulon and show CroRS upregulates expression of all major components of the enterococcal cell envelope in response to teixobactin challenge. To gain further insight into the function of this regulon we isolated and characterized ΔcroRSmutants recovered for wild-type growth and tolerance. We show introduction of a single stop codon in a heptaprenyl diphosphate synthase (hppS), a key enzyme in the synthesis of the quinone electron carrier demethylmenaquinone (DMK), is sufficient to rescue loss of cell envelope integrity in thecroRSdeletion strain. Based on these findings, we propose a model where CroRS acts as a gate-keeper of isoprenoid biosynthesis, mediating flux of isoprenoids needed for cell wall synthesis (undecaprenyl pyrophosphate; UPP) and respiration (DMK) to maintain cell wall homeostasis upon antimicrobial challenge. Dysregulation of this flux in the absence ofcroRSleads to a loss of tolerance, which is rescued by loss of function mutations in HppS, allowing an increase in isoprenoid flow to UPP and subsequently cell wall synthesis.ImportanceAntimicrobial tolerance is the ability of a microorganism to survive, but not grow upon antimicrobial challenge, and is an important precursor to the development of antimicrobial resistance (the ability to profilerate). Understanding the molecular mechanisms that underpin tolerance will therefore aid in hampering the development of resistance to novel antimicrobials such as teixobactin. CroRS is an essential two-component regulator of antimicrobial tolerance in the bacterial pathogenEnterococcus faecalis. We have determined the antimicrobial-induced CroRS regulon and identified key mutations in a heptaprenyl diphosphate synthase to uncover a novel mechanism of antimicrobial tolerance.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3