Abstract
AbstractHuman germline-soma segregation occurs during weeks 2-3 in gastrulating embryos. While direct studies are hindered, here we investigate the dynamics of human primordial germ cell (PGCs) specification using in vitro models with temporally resolved single-cell transcriptomics and in-depth characterisation to in vivo datasets from human and non-human primates, including a 3D marmoset reference atlas. We elucidate the molecular signature for the transient gain of competence for germ cell fate during peri-implantation epiblast development. Further, we show that both the PGCs and amnion arise from transcriptionally similar TFAP2A positive progenitors at the posterior end of the embryo. Notably, genetic loss of function experiments show that TFAP2A is crucial for initiating the PGC fate without detectably affecting the amnion, and its subsequently replaced by TFAP2C as an essential component of the genetic network for PGC fate. Accordingly, amniotic cells continue to emerge from the progenitors in the posterior epiblast, but importantly, this is also a source of nascent PGCs.
Publisher
Cold Spring Harbor Laboratory
Reference62 articles.
1. Conserved features of non-primate bilaminar disc embryos and the germline
2. destiny: diffusion maps for large-scale single-cell data in R
3. Spatial profiling of early primate gastrulation in utero
4. Bergmann, S. et al. (no date) ‘Spatial embryo profiling of primate gastrulation’, In review.
5. Fast sex identification in wild mammals using PCR amplification of the Sry gene’;Folia Zoologica,2003
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献