Hi-TrAC reveals fractal nesting of super-enhancers

Author:

Cao YaqiangORCID,Liu Shuai,Cui Kairong,Tang Qingsong,Zhao Keji

Abstract

AbstractEukaryotic genome spatial folding plays a key role in genome function. Decoding the principles and dynamics of 3D genome organization depends on improving technologies to achieve higher resolution. Chromatin domains have been suggested as regulatory micro-environments, whose identification is crucial to understand the genome architecture. We report here that our recently developed method, Hi-TrAC, which specializes in detecting chromatin loops among genomic accessible regulatory regions, allows us to examine active domains with limited sequencing depths at a high resolution. Hi-TrAC can detect active sub-TADs with a median size of 100kb, most of which harbor one or two cell specifically expressed genes and regulatory elements such as super-enhancers organized into nested interaction domains. These active sub-TADs are characterized by highly enriched signals of histone mark H3K4me1 and chromatin-binding proteins, including Cohesin complex. We show that knocking down core subunit of the Cohesin complex using shRNAs in human cells or decreasing the H3K4me1 modification by deleting the H3K4 methyltransferase Mll4 gene in mouse Th17 cells disrupted the sub-TADs structure. In summary, Hi-TrAC serves as a compatible and highly responsive approach to studying dynamic changes of active sub-TADs, allowing us more explicit insights into delicate genome structures and functions.Highlights-Hi-TrAC detects active sub-TADs with a median size of 100 kb.-Hi-TrAC reveals a block-to-block interaction pattern between super-enhancers, and fractal structures within super-enhancers.-Active sub-TADs are disrupted by the knockdown of RAD21.-Active sub-TADs interaction densities are decreased by the knockout of Mll4.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3