Fully Personalised Degenerative Disease Modelling - A Duchenne Muscular Dystrophy Case Study

Author:

Baker EvanORCID,Challenor PeterORCID,Bamsey Ian,Muntoni FrancescoORCID,Manzur Adnan Y.,Tsaneva-Atanasova KrasimiraORCID

Abstract

AbstractPredicting the trajectory of rare degenerative diseases can be extremely beneficial, especially when these predictions are personalised to be relevant for a specific patient. These predictions can help inform and advise patients, families, and clinicians about the next stages of treatment and care. Obtaining such predictions, however, can be challenging, especially when data is limited. In particular, it is important that these predictions do not rely too heavily on general trends from the wider afflicted population while not relying exclusively on the, potentially sparse, data from the patient in question. We present a case study, wherein a modelling framework is developed for predicting a patient’s long term trajectory, using a mix of data from the patient of concern and a database of previously observed patients. This framework directly accounts for the temporal structure of a patient’s trajectory, effortlessly handles a large amount of missing data, allows for a wide range of patient progression, and offers a robust quantification of the various uncertainties. We showcase this framework to an example involving Duchenne Muscular Dystrophy, where it provides promising results.

Publisher

Cold Spring Harbor Laboratory

Reference29 articles.

1. Cystic fibrosis;The Lancet,2009

2. Huntington Disease

3. Alzheimer disease;Nature reviews Disease primers,2021

4. Spinal muscular atrophy;The Lancet,2008

5. Multiple sclerosis – a review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3