The DynaSig-ML Python package: automated learning of biomolecular dynamics-function relationships

Author:

Mailhot OlivierORCID,Major FrançoisORCID,Najmanovich RafaelORCID

Abstract

AbstractSummaryThe DynaSig-ML (“Dynamical Signatures - Machine Learning”) Python package allows the efficient, user-friendly exploration of 3D dynamics-function relationships in biomolecules, using datasets of experimental measures from large numbers of sequence variants. The DynaSig-ML package is built around the Elastic Network Contact Model (ENCoM), the first and only sequence-sensitive coarse-grained NMA model, which is used to generate the input Dynamical Signatures. Starting from in silico mutated structures, the whole pipeline can be run with just a few lines of Python and modest computational resources. The compute-intensive steps can also easily be parallelized in the case of either large biomolecules or vast amounts of sequence variants. As an example application, we use the DynaSig-ML package to predict the evolutionary fitness of the bacterial enzyme VIM-2 lactamase from deep mutational scan data.Availability and implementationDynaSig-ML is open source software available at https://github.com/gregorpatof/dynasigml_packageContactrafael.najmanovich@umontreal.ca

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3