Pangenome analysis of SARS-CoV2 strains to Identify Potential vaccine targets by Reverse Vaccinology

Author:

Haseeb MuhammadORCID,Amir Afreenish,Irshad Hamza

Abstract

AbstractBackgroundCoronavirus disease 2019 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) leads to respiratory failure and obstructive alveolar damage, which may be fatal in immunocompromised individuals. COVID-19 pandemic has severe global implications badly, and the situation in the world is depreciating with the emergence of novel variants. The aim of our study is to explore the genome of SARS-CoV2 followed by in silico reverse vaccinology analysis. This will help to identify the most putative vaccine candidate against the virus in a robust manner and enables cost-effective development of vaccines compared with traditional strategies.MethodsThe genomic sequencing data is retrieved from NCBI (Reference Sequence Number NC_045512.2). The sequences are explored through comparative genomics approaches by GENOMICS to find out the core genome. The comprehensive set of proteins obtained was employed in computational vaccinology approaches for the prediction of the best possible B and T cell epitopes through ABCpred and IEDB Analysis Resource, respectively. The multi-epitopes were further tested against human toll-like receptor and cloned in E. coli plasmid vector.FindingsThe designed Multiepitope Subunit Vaccine was non-allergenic, antigenic (0.6543), & non-toxic, with significant connections with the human leukocyte antigen (HLA) binding alleles, and collective global population coverage of 84.38%. It has 276 amino acids, consisting of an adjuvant with the aid of EAAAK linker, AAY linkers used to join the 4 CTL epitopes, GPGPG linkers used to join the 3 HTL epitopes and KK linkers used to join the 7 B-cell epitopes. MESV docking with human pathogenic toll-like receptors-3 (TLR3) exhibited a stable & high binding affinity. An in-silico codon optimization approach was used in the codon system of E. coli (strain K12) to obtain the GC-Content of Escherichia coli (strain K12): 50.7340272413779 and CAI-Value of the improved sequence: 0.9542834278823386. The multi-epitope vaccine’s optimized gene sequence was cloned in-silico in E. coli plasmid vector pET-30a (+), BamHI and HindIII restriction sites were added to the N and C-terminals of the sequence, respectively.ConclusionThere is a pressing need to combat COVID-19 and we need quick and reliable approaches against Covid-19. By using In-silico approaches, we acquire an effective vaccine that could trigger adequate immune responses at the cellular and humoral level. The suggested sequences can be further validated through in vivo and in vitro experimentation.Statement of SignificanceCurrent developments in the immunological bioinformatics areas has resulted in different servers and tools that are cost and time efficient for the traditional vaccine development. Though for designing a multiple epitope vaccine the antigenic epitopes prediction of a relevant protein by immunoinformatic methods are very helpful.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

1. Abdelmageed, M. I. , Abdelmoneim, A. H. , Mustafa, M. I. , Elfadol, N. M. , Murshed, N. S. , Shantier, S. W. , & Makhawi, A. M. (2020). Design of a Multiepitope-Based Peptide Vaccine against the e Protein of Human COVID-19: An Immunoinformatics Approach. BioMed Research International, 2020. https://doi.org/10.1155/2020/2683286

2. Design of multi-epitope vaccine candidate against SARS-CoV-2: a in-silico study;Journal of Biomolecular Structure & Dynamics,2021

3. Abramo, J. M. , Reynolds, A. , Crisp, G. T. , Weurlander, M. , Söderberg, M. , Scheja, M. , Hult, H. , Wernerson, A. , Emacs, A. , Distribution, U. E. , Makes, W. , Like, A. , Text, O. , Editors, O. T. , Interface, T. A. , Sets, D. C. , Look, T. R. , Veterans, E. , Bindings, K. , … Rugg, G. (2012). Individuality in music performance. In Assessment & Evaluation in Higher Education (Vol. 37, Issue October). Springer International Publishing. https://doi.org/10.1007/82

4. Membrane binding proteins of coronaviruses;Future Virology,2019

5. CD4+ regulatory T cells: Mechanisms of induction and effector function

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3