Intronic regulation of SARS-CoV-2 receptor (ACE2) expression mediated by immune signaling and oxidative stress pathways

Author:

Richard Daniel,Muthuirulan PushpanathanORCID,Aguiar JenniferORCID,Doxey AndrewORCID,Banerjee Arinjay,Mossman KarenORCID,Hirota JeremyORCID,Capellini Terence D.ORCID

Abstract

AbstractThe angiotensin-converting enzyme 2 (ACE2) protein has been highly studied as a key catalytic regulator of the renin-angiotensin system (RAS), involved in fluid homeostasis and blood pressure modulation. In addition to its important physiological role as a broadly-expressed membrane-bound protein, ACE2 serves as a cell-surface receptor for some viruses - most notably, coronaviruses such as SARS-CoV and SARS-CoV-2. Differing levels of ACE2 expression may impact viral susceptibility and subsequent changes to expression may be a pathogenic mechanism of disease risk and manifestation. Therefore, an improved understanding of how ACE2 expression is regulated at the genomic and transcriptional level may help us understand not only how the effects of pre-existing conditions (e.g., chronic obstructive pulmonary disease) may manifest with increased COVID-19 incidence, but also the mechanisms that regulate ACE2 levels following viral infection. Here, we initially perform bioinformatic analyses of several datasets to generate hypotheses about ACE2 gene-regulatory mechanisms in the context of immune signaling and chronic oxidative stress. We then identify putative non-coding regulatory elements within ACE2 intronic regions as potential determinants of ACE2 expression activity. We perform functional validation of our computational predictions in vitro via targeted CRISPR-Cas9 deletions of the identified ACE2 cis-regulatory elements in the context of both immunological stimulation and oxidative stress conditions. We demonstrate that intronic ACE2 regulatory elements are responsive to both immune signaling and oxidative-stress pathways, and this contributes to our understanding of how expression of this gene may be modulated at both baseline and during immune challenge. Our work supports the further pursuit of these putative mechanisms in our understanding, prevention, and treatment of infection and disease caused by ACE2-utilizing viruses such as SARS-CoV, SARS-CoV-2, and future emerging SARS-related viruses.Author SummaryThe recent emergence of the virus SARS-CoV-2 which has caused the COVID-19 pandemic has prompted scientists to intensively study how the virus enters human host cells. This work has revealed a key protein, ACE2, that acts as a receptor permitting the virus to infect cells. Much research has focused on how the virus physically interacts with ACE2, yet little is known on how ACE2 is turned on or off in human cells at the level of the DNA molecule. Understanding this level of regulation may offer additional ways to prevent or lower viral entry into human hosts. Here, we have examined the control of the ACE2 gene, the DNA sequence that instructs ACE2 protein receptor formation, and we have done so in the context of immune stimulation. We have indeed identified a number of DNA on/off switches for ACE2 that appear responsive to immuno-logical and oxidative stress. These switches may fine-tune how ACE2 is turned on or off before, during, and/or after infection by SARS-CoV-2 or other related coronaviruses. Our studies help pave the way for additional functional studies on these switches, and their potential therapeutic targeting in the future.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3