Oxidative phosphorylation is required for powering motility and development of the sleeping sickness parasite Trypanosoma brucei within the tsetse fly vector

Author:

Dewar Caroline E.ORCID,Casas-Sanchez AitorORCID,Dieme Constentin,Crouzols Aline,Haines Lee R.ORCID,Acosta-Serrano ÁlvaroORCID,Rotureau BriceORCID,Schnaufer AchimORCID

Abstract

AbstractThe single-celled parasite Trypanosoma brucei causes sleeping sickness in humans and nagana in livestock and is transmitted by hematophagous tsetse flies. Lifecycle progression from mammalian bloodstream form to tsetse midgut form and, subsequently, infective salivary gland form depends on complex developmental steps and migration within different fly tissues. As the parasite colonises the glucose-poor insect midgut, its ATP production is thought to depend on activation of mitochondrial amino acid catabolism via oxidative phosphorylation. This process involves respiratory chain complexes and the F1FO-ATP synthase, and it requires protein subunits of these complexes that are encoded in the parasite’s mitochondrial DNA (kinetoplast or kDNA). Here we show that a progressive loss of kDNA-encoded functions correlates with an increasingly impaired ability of T. brucei to initiate and complete its development in the tsetse. First, parasites with a mutated F1FO-ATP synthase with a reduced capacity for oxidative phosphorylation can initiate differentiation from bloodstream to insect form, but they are unable to proliferate in vitro. Unexpectedly, these cells can still colonise the tsetse midgut. However, these parasites exhibit a motility defect and are severely impaired in colonising or migrating to subsequent tsetse tissues. Second, parasites with a fully disrupted F1FO-ATP synthase complex that is completely unable to produce ATP by oxidative phosphorylation can still differentiate to the first insect stage in vitro but die within a few days and cannot establish a midgut infection in vivo. Third, mutant parasites lacking kDNA entirely can initiate differentiation but die within 24 h. Together, these three scenarios show that efficient ATP production via oxidative phosphorylation is not essential for initial colonisation of the tsetse vector, but it is required to power trypanosome migration within the fly.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3