Oct4 primarily controls enhancer activity rather than accessibility

Author:

Xiong Le,Tolen Erik A.,Choi Jinmi,Caizzi Livia,Adachi Kenjiro,Lidschreiber Michael,Cramer Patrick,Schöler Hans R.

Abstract

AbstractThe transcription factor Oct4 is essential for maintaining stem cell pluripotency and for efficient cell reprogramming, but its functional roles are far from being understood. Here, we investigate the functions of Oct4 by rapidly depleting Oct4 from mouse embryonic stem cells and conducting a time-resolved multiomics analysis. Oct4 depletion leads to an immediate loss of its binding to putative enhancers that are accessible in chromatin. Loss of Oct4 is accompanied by a concomitant decrease in mRNA synthesis from putative target genes that are part of the transcriptional network that maintains pluripotency. Oct4 binding to enhancers does not correlate with chromatin accessibility, whereas Sox2 can apparently retain accessibility after Oct4 depletion even in the absence of eRNA synthesis. These results are consistent with the model that Sox2 primarily acts as a pioneer factor that renders enhancers accessible, whereas Oct4 acts primarily as a transcriptional activator that stimulates transcription of pluripotency enhancers and their target genes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3