Exploration of molecular mechanism underlying the self-flocculation of Zymomonas mobilis through comparative omics analyses and experimental validations for developing robust production systems

Author:

Cao Lian-Ying,Yang Yongfu,Liu Chen-Guang,Chen Yunhao,Zhang Xue,Wang Xia,Xia Juan,Yang Shihui,Bai Feng-WuORCID

Abstract

AbstractZymomonas mobilis metabolizes sugar through the Entner-Doudoroff pathway with less ATP generated for lower biomass accumulation and more substrate to product formation with improved yield, since ATP is dissipated predominately through growth for intracellular energy homeostasis, making it a platform to be engineered as microbial cell factories, particularly for producing bulk commodities with major cost from feedstock consumption. ZM401, a self-flocculating mutant, presents advantages for production including cost-effective biomass recovery through gravity sedimentation, self-immobilization within bioreactors for high cell density to improve productivity and enhanced tolerance to environmental stresses for high product titers, but molecular mechanism underlying this phenotype is largely unknown. In this work, we sequenced and assembled the genome of ZM401 to explore genetic basis for the self-flocculation of the bacterial cells through comparative genomic and transcriptomic analyses, molecular docking simulations for enzymes encoded by functional genes and their substrates/activators, and experimental validations. Our results demonstrated that the single nucleotide deletion in ZMO1082 disrupted its stop codon for the putative gene being fused with ZMO1083, which created an exciting gene encoding the subunit A of the bacterial cellulose synthase with unique function for synthesizing cellulose microfibrils to flocculate the bacterial cells, and the single nucleotide mutation in ZMO1055 compromised the function of bifunctional diguanylate cyclase/phosphodiesterase encoded by the gene on the degradation of c-di-GMP for its intracellular accumulation to activate the cellulose biosynthesis. These discoveries are significant not only for optimizing the self-flocculation of Z. mobilis, but also engineering other bacteria with the self-flocculating phenotype for robust production.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3