Nucleotide Dynamics During Flossing of Polycation-DNA-Polycation through a Nanopore using Molecular Dynamics

Author:

Mahalik Jyoti P.ORCID,Muthukumar MurugappanORCID

Abstract

AbstractThe full potential of solid state nanopores is yet to be realized for genome sequencing. Due to its robustness it can handle strong voltage amplitude and frequency. The effect of strong alternating voltage on the dynamics of nucleotides during translocation has been explored. We proposed a setup consisting of single stranded DNA covalently linked with symmetric polycations at both ends fashioned after the proposal of Kasianowicz. 1 Such a setup allows for repeated back and forth motion of the DNA along the nanopore (1.45 nm diameter and 1.53 nm thick) by simply switching the voltage polarity if the polycation tail is sufficiently long (≥ 10) and the applied voltage is below 0.72 volts, but the average residence time of the nucleotides are too small to be of any practical use (6-30 ns). When alternating voltage of higher frequency is applied, it enhances the average residence time of the nucleotides by an order of magnitude to ∼ 0.1 µs relative to direct voltage but the individual trajectories are too stochastic. Since, we are able to collect repeated read on the dynamics of individual nucleotides, we obtained the most probable time of appearance of a nucleotide within the nanopore. With such construct we were able to get almost linear dependence of most probable time versus nucleotide index, after gaussian fitting.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3