Cellular intelligence: dynamic specialization through non-equilibrium multi-scale compartmentalization

Author:

Tuyéras RémyORCID,Agudelo Leandro Z.ORCID,Ram Soumya P.,Loon Anjanet,Kutlu Burak,Grove Kevin,Kellis Manolis

Abstract

AbstractIntelligence is usually associated with the ability to perceive, retain and use information to adapt to changes in one’s environment. In this context, systems of living cells can be thought of as intelligent entities. Here, we show that the concepts of non-equilibrium tuning and compartmentalization are sufficient to model manifestations of cellular intelligence such as specialization, division, fusion and communication using the language of operads. We implement our framework as an unsupervised learning algorithm, IntCyt, which we show is able to memorize, organize and abstract reference machine-learning datasets through generative and self-supervised tasks. Overall, our learning framework captures emergent properties programmed in living systems, and provides a powerful new approach for data mining.Structured abstractBackgroundAlthough intelligence has been given many definitions, we can associate it with the ability to perceive, retain, and use information to adapt to changes in one’s environment. In this context, systems of living cells can be thought of as intelligent entities. While one can reasonably describe their adaptive abilities within the realm of homeostatic mechanisms, it is challenging to comprehend the principles governing their metabolic intelligence. In each organism, cells have indeed developed as many ways to adapt as there are cell types, and elucidating the impetus of their evolutionary behaviors could be the key to understanding life processes and likely diseases.AdvancesThe goal of this article is to propose principles for understanding cellular intelligence. Specifically, we show that the concepts of non-equilibrium tuning and compartmentalization are enough to recover cellular adaptive behaviors such as specialization, division, fusion, and communication. Our model has the advantage to encompass all scales of life, from organelles to organisms through systems of organs and cell assemblies. We achieve this flexibility using the language of operads, which provides an elegant framework for reasoning about nested systems and, as an emergent behavior, non-equilibrium compartmentalization.To demonstrate the validity and the practical utility of our model, we implement it in the form of an unsupervised learning algorithm, IntCyt, and apply it to reference machine learning datasets through generative and self-supervised tasks. We find that IntCyt’s interpretability, plasticity and accuracy surpass that of a wide range of machine learning algorithms, thus providing a powerful approach for data mining.OutlookOur results indicate that the nested hierarchical language of operads captures the emergent properties of programmed cellular metabolism in the development of living systems, and provide a new biologically-inspired, yet practical and lightweight, computational paradigm for memorizing, organizing and abstracting datasets.

Publisher

Cold Spring Harbor Laboratory

Reference53 articles.

1. Biology is the new physics;EMBO reports,2003

2. The great ideas of biology

3. M. C. Reed , Why is mathematical biology so hard?, Notices of the American Mathematical Society 51 (2004).

4. A unifying view of 21st century systems biology

5. Search for organising principles: under-standing in systems biology;IEE Proceedings - Systems Biology,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3