Interacting effects of cold snaps, rain, and agriculture on the fledging success of a declining aerial insectivore

Author:

Garrett Daniel R.ORCID,Pelletier FanieORCID,Garant DanyORCID,Bélisle MarcORCID

Abstract

AbstractClimate change predicts the increased frequency, duration, and intensity of inclement weather periods, such as unseasonably low temperatures (i.e., cold snaps) and prolonged precipitation. Many migratory species have advanced the phenology of important life history stages, and as a result will likely be exposed to these periods of inclement spring weather more often, thus risking reduced fitness and population growth. For declining avian species, including aerial insectivores, anthropogenic landscape changes such as agricultural intensification are another driver of population declines. These landscape changes may affect the foraging ability of food provisioning parents, and reduce the survival of nestlings exposed to inclement weather, through for example pesticide exposure impairing thermoregulation and punctual anorexia. Breeding in agro-intensive landscapes may thus exacerbate the negative effects of inclement weather under climate change. We observed that a significant reduction in the availability of insect prey occurred when daily maximum temperatures fell below 18.3°C, and thereby defined any day where the maximum temperature fell below this value as a day witnessing a cold snap. We then combined daily information on the occurrence of cold snaps and measures of precipitation to assess their impact on the fledging success of Tree Swallows (Tachycineta bicolor) occupying a nest box system placed across a gradient of agricultural intensification. Estimated fledging success of this declining aerial insectivore was 36.2% lower for broods experiencing four cold snap days during the 12 days post hatching period versus broods experiencing none, and this relationship was worsened when facing more precipitation. We further found that the overall negative effects of a brood experiencing periods of inclement weather was exacerbated in more agro-intensive landscapes. Our results indicate that two of the primary hypothesized drivers of many avian population declines may interact to further increase the rate of declines in certain landscape contexts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3