Identification of the CoA-ester intermediates and genes involved in the cleavage and degradation of the steroidal C-ring by Comamonas testosteroni TA441

Author:

Horinouchi MasaeORCID,Hayashi Toshiaki

Abstract

ABSTRACTComamonas testosteroni TA441 degrades steroids aerobically via aromatization of the A-ring accompanied by B-ring cleavage, followed by D- and C-ring cleavage. We previously revealed major enzymes and intermediate compounds in A,B-ring cleavage, β-oxidation cycle of the cleaved B-ring, and partial C,D-ring cleavage process. Here, we elucidated the C-ring cleavage and the β-oxidation cycle that follows. ScdL1L2, a 3-ketoacid Coenzyme A (CoA) transferase which belongs to the SugarP_isomerase superfamily, was thought to cleave the C-ring of 9-oxo-1,2,3,4,5,6,10,19-octanor-13,17-secoandrost-8(14)-ene-7,17-dioic acid-CoA ester, the key intermediate compound in the degradation of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid (3aα-H-4α [3′-propionic acid]-7aβ-methylhexahydro-1,5-indanedione; HIP)-CoA ester in the previous study; however, this study suggested that ScdL1L2 is the isomerase of the derivative with a hydroxyl group at C-14 which cleaves C ring. The subsequent ring-cleaved product was indicated to be converted to 4-methyl-5-oxo-octane-1,8-dioic acid-CoA ester mainly by ORF33-encoded CoA-transferase (named ScdJ), followed by dehydrogenation by ORF21 and 22-encoded acyl-CoA dehydrogenase (named ScdM1M2). Then a water molecule is added by ScdN for further degradation by β-oxidation. ScdN is considered to catalyze the last reaction in C,D-ring degradation by the enzymes encoded in the steroid degradation gene cluster tesB to tesR.IMPORTANCEStudies on bacterial steroid degradation were initiated more than 50 years ago primarily to obtain materials for steroid drugs. Steroid-degrading bacteria are globally distributed, and the role of bacterial steroid degradation in the environment as well as in human is attracting attention. The overall degradation of steroidal four rings is proposed, however there are still much to be revealed to understand the complete degradation pathway. This study aims to uncover the whole steroid degradation process in C. testosteroni, which is one of the most studied representative steroid degrading bacteria and is suitable for exploring the degradation pathway because the involvement of degradation-related genes can be determined by gene disruption.

Publisher

Cold Spring Harbor Laboratory

Reference57 articles.

1. Studies on the microbiological degradation of steroid ring A;J Biol Chem,1968

2. Microbiological transformations;II. Microbiological aromatization of steroids. J Am Chem Soc,1958

3. MICROBIOLOGICAL TRANSFORMATIONS. III.1 THE HYDROXYLATION OF STEROIDS AT C-9

4. Microbiological transformations;IV. The microbiological aromatization of steroids. J Am Chem Soc,1961

5. Mechanisms of steroid oxidation by microorganisms. IX. On the mechanism of ring A cleavage in the degradation of 9,10-seco steroids by microorganisms;J Biol Chem,1966

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3