Sexual dimorphism in a neuronal mechanism of spinal hyperexcitability across rodent and human models of pathological pain

Author:

Dedek AnnemarieORCID,Xu Jian,Lorenzo Louis-Étienne,Godin Antoine G.,Kandegedara Chaya M.,Glavina Geneviève,Landrigan Jeffrey A.,Lombroso Paul J.,De Koninck Yves,Tsai Eve C.,Hildebrand Michael E.ORCID

Abstract

AbstractThe prevalence and severity of many chronic pain syndromes differ across sex, and recent studies have identified differences in immune signalling within spinal nociceptive circuits as a potential mediator. Although it has been proposed that sex-specific pain mechanisms converge once they reach neurons within the superficial dorsal horn (SDH), direct investigations using rodent and human preclinical pain models have been lacking. Here, we discovered that in the Freund’s Adjuvant in vivo model of inflammatory pain, where both male and female rats display tactile allodynia, a pathological coupling between KCC2-dependent disinhibition and NMDA receptor potentiation within SDH neurons was observed in male but not female rats. Unlike males, the neuroimmune mediator, BDNF, failed to downregulate inhibitory signalling elements (KCC2 and STEP61) and upregulate excitatory elements (pFyn, GluN2B, and pGluN2B) in female rats, resulting in no effect of ex vivo BDNF on synaptic NMDA receptor responses in female lamina I neurons. Importantly, this sex difference in spinal pain processing was conserved from rodents to humans. As in rodents, ex vivo spinal treatment with BDNF downregulated markers of disinhibition and upregulated markers of facilitated excitation in SDH neurons from male but not female human organ donors. Ovariectomy in female rats recapitulated the male pathological pain neuronal phenotype, with BDNF driving a coupling between disinhibition and NMDA receptor potentiation in adult lamina I neurons following the prepubescent elimination of sex hormones in females. This discovery of sexual dimorphism in a central neuronal mechanism of chronic pain across species provides a foundational step towards a better understanding and treatment for pain in both sexes.

Publisher

Cold Spring Harbor Laboratory

Reference77 articles.

1. Pleis, J. R. , Ward, B. W. & Lucas, J. W. Summary health statistics for U.S. adults: National Health Interview Survey, 2009. Vital and health statistics. Series 10, Data from the National Health Survey 1–207 (2010).

2. Sex-Dependent Glial Signaling in Pathological Pain: Distinct Roles of Spinal Microglia and Astrocytes

3. Prevalence of chronic pain with neuropathic characteristics in the general population

4. Sex differences in pain: a brief review of clinical and experimental findings

5. Qualitative sex differences in pain processing: emerging evidence of a biased literature;Nature Reviews Neuroscience,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3