A metabolically stable PET tracer for imaging synaptic vesicle protein 2A: Synthesis and preclinical characterization of [18F]SDM-16

Author:

Zheng ChaoORCID,Holden Daniel,Zheng Ming-Qiang,Pracitto Richard,Wilcox Kyle C.,Lindemann Marcel,Felchner Zachary,Zhang Li,Tong Jie,Fowles Krista,Finnema Sjoerd J.,Nabulsi Nabeel,Carson Richard E.,Huang Yiyun,Cai ZhengxinORCID

Abstract

ABSTRACTPurposeTo investigate the synaptic vesicle glycoprotein 2A (SV2A) expression in the whole central nervous system and peripheral tissues, a metabolically stable SV2A radiotracer is desirable to minimize a potential confounding effect of radiometabolites. The aim of this study was to develop and evaluate a metabolically stable SV2A radiotracer, [18F]SDM-16, in nonhuman primate brains.MethodsThe racemic SDM-16 (4-(3,5-difluorophenyl)-1-((2-methyl-1H-imidazol-1-yl)methyl)pyrrolidin-2-one) was synthesized and assayed for in vitro SV2A binding affinity. We synthesized the enantiopure [18F]SDM-16 using the corresponding arylstannane precursor. Nonhuman primate brain PET was performed on a FOCUS 220 system. Arterial blood was drawn for metabolite analysis and construction of plasma input function. Regional time-activity curves (TACs) were evaluated with the one-tissue compartment (1TC) model to obtain the volume of distribution (VT). Binding potential (BPND) was calculated using either the nondisplaceable volume of distribution (VND) or the centrum semiovale (CS) as the reference region.ResultsRacemic SDM-16 was synthesized in 3 steps with 44% overall yield and has high affinity (Ki = 3.7 nM) to human SV2A. [18F]SDM-16 was prepared in greater than 99% radiochemical and enantiomeric purity. This radiotracer displayed high specific binding in brain and was metabolically more stable than other SV2A PET tracers. The plasma free fraction (fP) of [18F]SDM-16 was 69%, which was higher than those of [11C]UCB-J (46%), [18F]SynVesT-1 (43%), [18F]SynVesT-2 (41%), and [18F]UCB-H (43%). The TACs were well described with the 1TC. The averaged test-retest variability (TRV) was −9±8%, and averaged absolute TRV (aTRV) was 10±7% for all analyzed brain regions.ConclusionWe have successfully synthesized a metabolically stable and high affinity SV2A PET tracer, [18F]SDM-16, which showed high specific and reversible binding in the NHP brain. [18F]SDM-16 may have potential application in the visualization and quantification of SV2A beyond the brain.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3