Abstract
AbstractBacillus anthracis is an obligate pathogen and a causative agent of anthrax. Its major virulence factors are plasmid-coded; however, recent studies have revealed chromosome-encoded virulence factors, indicating that the current understanding of its virulence mechanism is elusive and needs further investigation. In this study, we established a silkworm (Bombyx mori) infection model of B. anthracis Sterne. We showed that silkworms were killed by B. anthracis and cured of the infection when administered with antibiotics. We quantitatively determined the lethal dose of the bacteria that kills 50% larvae and effective doses of antibiotics that cure 50% infected larvae. Furthermore, we demonstrated that B. anthracis mutants with disruption in virulence genes such as pagA, lef, and atxA had attenuated silkworm-killing ability and reduced colonization in silkworm hemolymph. The silkworm infection model established in this study can be utilized in large-scale infection experiments to identify novel virulence determinants and develop novel therapeutic options against B. anthracis infections.
Publisher
Cold Spring Harbor Laboratory