Mangroves deviate from other angiosperms in their genome size, leaf cell size, and cell packing density relationships

Author:

Jiang Guo-Feng,Li Su-Yuan,Dinnage RussellORCID,Cao Kun-FangORCID,Simonin Kevin A.,Roddy Adam B.ORCID

Abstract

ABSTRACTBackground and AimsWhile genome size limits the minimum sizes and maximum numbers of cells that can be packed into a given leaf volume, mature cell sizes can be substantially larger than their meristematic precursors and vary in response to abiotic conditions. Mangroves are iconic examples of how abiotic conditions can influence the evolution of plant phenotypes.MethodsHere, we examined the coordination between genome size, leaf cell sizes, and cell packing densities, and leaf size in 13 mangrove species across four sites. Four of these species occurred at more than one site, allowing us to test the effect of climate on leaf anatomy.ResultsWe found that genome sizes of mangroves were very small compared to other angiosperms, and, like other angiosperms, mangrove cells were always larger than the minimum size defined by genome size. Increasing mean annual temperature of a growth site led to higher packing densities of veins (Dv) and stomata (Ds) and smaller epidermal cells but had no effect on stomatal size. Contrary to other angiosperms, mangroves exhibited (1) a negative relationship between guard cell size and genome size; (2) epidermal cells that were smaller than stomata, and (3) coordination between Dv and Ds that was not mediated by epidermal cell size. Furthermore, mangrove epidermal cell sizes and packing densities covaried with leaf size.ConclusionsWhile mangroves exhibited coordination between veins and stomata and attained a maximum theoretical stomatal conductance similar to other angiosperms, the tissue-level tradeoffs underlying these similar relationships across species and environments was markedly different, perhaps indicative of the unique structural and physiological adaptations of mangroves to their stressful environments.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3