A machine learning approach identifies unresolving secondary pneumonia as a contributor to mortality in patients with severe pneumonia, including COVID-19

Author:

Gao Catherine A.ORCID,Markov Nikolay S.ORCID,Stoeger ThomasORCID,Pawlowski AnnaORCID,Kang MengjiaORCID,Nannapaneni PrasanthORCID,Grant Rogan A.ORCID,Pickens ChiagozieORCID,Walter James M.ORCID,Kruser Jacqueline M.ORCID,Rasmussen LukeORCID,Schneider DanORCID,Starren JustinORCID,Donnelly Helen K.ORCID,Donayre AlvaroORCID,Luo YuanORCID,Scott Budinger GRORCID,Wunderink Richard G.ORCID,Misharin Alexander V.ORCID,Singer Benjamin D.ORCID,

Abstract

AbstractBackgroundPatients with severe SARS-CoV-2 pneumonia experience longer durations of critical illness yet similar mortality rates compared to patients with severe pneumonia secondary to other etiologies. As secondary bacterial infection is common in SARS-CoV-2 pneumonia, we hypothesized that unresolving ventilator-associated pneumonia (VAP) drives the apparent disconnect between length-of-stay and mortality rate among these patients.MethodsWe analyzed VAP in a prospective single-center observational study of 585 mechanically ventilated patients with suspected pneumonia, including 190 patients with severe SARS-CoV-2 pneumonia. We developed CarpeDiem, a novel machine learning approach based on the practice of daily ICU team rounds to identify clinical states for each of the 12,495 ICU patient-days in the cohort. We used the CarpeDiem approach to evaluate the effect of VAP and its resolution on clinical trajectories.FindingsPatients underwent a median [IQR] of 4 [2,7] transitions between 14 clinical states during their ICU stays. Clinical states were associated with differential hospital mortality. The long length-of-stay among patients with severe SARS-CoV-2 pneumonia was associated with prolonged stays in clinical states defined by severe respiratory failure and with a lower frequency of transitions between clinical states. In all patients, including those with COVID-19, unresolving VAP episodes were associated with transitions to unfavorable states and hospital mortality.InterpretationCarpeDiem offers a machine learning approach to examine the effect of VAP on clinical outcomes. Our findings suggest an underappreciated contribution of unresolving secondary bacterial pneumonia to outcomes in mechanically ventilated patients with pneumonia, including due to SARS-CoV-2.Abstract FigureGraphical abstractDisentangling the contributions of ICU complications and interventions to ICU outcomes. (A) Traditional approaches evaluate the ICU stay as a black box with severity of illness measured on presentation and dichotomized survival at an arbitrary time point (e.g., day 28) or on ICU or hospital discharge. Hence, the effect of intercurrent complications and interventions cannot be easily measured, a problem that is compounded when ICU stays are long or significantly differ between groups. (B) Defining the ICU course by clinical features during each day in the ICU permits the association of a complication or intervention with transitions toward clinical states associated with favorable or unfavorable outcomes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3