Characterizing Cone Spectral Classification by Optoretinography

Author:

Pandiyan Vimal PrabhuORCID,Schleufer Sierra,Slezak Emily,Fong James,Upadhyay Rishi,Roorda Austin,Ng Ren,Sabesan RamkumarORCID

Abstract

AbstractLight propagation in photoreceptor outer segments is affected by photopigment absorption and the phototransduction amplification cascade. Photopigment absorption has been studied using retinal densitometry, while recently, optoretinography (ORG) has provided an avenue to probe changes in outer segment optical path length due to phototransduction. With adaptive optics (AO), both densitometry and ORG have been used for cone spectral classification, based on the differential bleaching signatures of the three cone types. Here, we characterize cone classification by ORG, implemented in an AO line-scan OCT and compare it against densitometry. The cone mosaics of five color normal subjects were classified using ORG showing high probability (∼0.99), low error (<0.22%), high test-retest reliability (∼97%) and short imaging durations (< 1 hour). Of these, the cone spectral assignments in two subjects were compared against AOSLO densitometry. High agreement (mean: 91%) was observed between the two modalities in these 2 subjects, with measurements conducted 6-7 years apart. Overall, ORG benefits from higher sensitivity and dynamic range to probe cone photopigments compared to densitometry, and thus provides greater fidelity for cone spectral classification.

Publisher

Cold Spring Harbor Laboratory

Reference42 articles.

1. Color and the cone mosaic;Annual review of vision science,2015

2. Distribution and morphology of human cone photoreceptors stained with anti-blue opsin

3. Supernormal vision and high-resolution retinal imaging through adaptive optics;Journal of the Optical Society of America A,1997

4. The arrangement of the three cone classes in the living human eye

5. Bleaching and regeneration of cone pigments in man

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3