Proteome-Wide Photo-Crosslinking Enables Residue-Level Visualization of Protein Interaction Networks in vivo

Author:

Faustino Anneliese M.ORCID,Sharma PiyooshORCID,Yadav Divya,Fried Stephen D.ORCID

Abstract

ABSTRACTCrosslinking mass spectrometry (XL-MS) is emerging as a unique method at the crossroads of structural and cellular biology, uniquely capable of identifying protein-protein interactions with residue-level resolution and on the proteome-wide scale. With the development of crosslinkers that can form linkages inside cells and easily cleave during fragmentation on the mass spectrometer (MS-cleavable crosslinks), it has become increasingly facile to identify contacts between any two proteins in complex samples, including in live cells or tissues. Photo-crosslinkers possess the advantages of high temporal resolution and high reactivity, thereby engaging all residue-types (rather than just lysine); nevertheless, photo-crosslinkers have not enjoyed widespread use, and have yet to be employed for proteome-wide studies, because their products are challenging to identify, and an MS-cleavable photo-crosslinker has not yet been reported. Here, we demonstrate the synthesis and application of two heterobifunctional photo-crosslinkers that feature diazirines and N-hydroxy-succinimidyl carbamate groups, the latter of which unveil MS-cleavable linkage upon acyl transfer to protein targets. Moreover, these crosslinkers demonstrate high water-solubility and cell-permeability. Using these compounds, we demonstrate the feasibility of proteome-wide photo-crosslinking mass spectrometry (photo-XL-MS), both in extracts and in cellulo. These studies provide a partial interaction map of the E. coli cytosol with residue-level resolution. We find that photo-XL-MS has a propensity to capture protein-protein interactions, particularly involving low-abundance uncharacterized proteins, suggesting it could be a powerful tool to shed light on the “darker” corners of the proteome. Overall, we describe methods that enable the detection of protein quinary interaction networks in their native environment at residue-level resolution proteome-wide, and we expect they will prove useful toward the effort to explore the molecular sociology of the cell.TOC graphic

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3