Nanoscale Friction of Biomimetic Hair Surfaces

Author:

Weiand ErikORCID,Ewen James P.ORCID,Roiter YuriORCID,Koenig Peter H.ORCID,Page Steven H.,Rodriguez-Ropero FranciscoORCID,Angioletti-Uberti StefanoORCID,Dini DanieleORCID

Abstract

AbstractWe investigate the nanoscale friction between biomimetic hair surfaces using chemical colloidal probe atomic force microscopy experiments and nonequilibrium molecular dynamics simulations. In the experiments, friction is measured between water-lubricated silica surfaces functionalised with monolayers of either octadecyl or sulfonate groups, which are representative of the surfaces of virgin and ultimately bleached hair, respectively. In the simulations, friction is monitored between coarse-grained model hair surfaces with different levels of chemical damage, where different fractions of grafted lipid molecules are randomly replaced with sulfonate groups. The sliding velocity dependence of friction can be described using an extended stress-augmented thermally activation model. As the damage level increases, the friction generally increases, but its sliding velocity-dependence decreases. At low sliding speeds, which are closer to those encountered physiologically and experimentally, we observe a monotonic increase of friction with the damage ratio, which is consistent with our new experiments using biomimetic surfaces and previous ones using real hair. This observation demonstrates that modified surface chemistry, rather than roughness changes or subsurface damage, control the increase in nanoscale friction of damaged hair. We expect the experimental and computational model surfaces proposed here to be useful to screen the tribological performance of hair care formulations.

Publisher

Cold Spring Harbor Laboratory

Reference129 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3